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Minimal Energy Problem

Spherical Code: A finite set C ⊂ Sn−1 with cardinality |C | = N.
r2 = |x − y |2 = 2− 2〈x , y〉 = 2− 2t.
Interaction potential h : [−1, 1)→ R
The h-energy of a spherical code C ⊂ Sn−1:

E (n, h;C ) :=
∑

x ,y∈C ,y 6=x

h(〈x , y〉),

where t = 〈x , y〉 denotes Euclidean inner product of x and y .

Minimal Energy Problem: Find

E(n, h;N) := min{E (n, h;C ) | C ⊂ Sn−1, |C | = N}.
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Absolutely Monotone Potentials

Interaction potential h : [−1, 1)→ R
Absolutely monotone potentials:

C∞+ := {h | h(k)(t) ≥ 0, t ∈ [−1, 1), k ≥ 0}.

Examples:
Newton potential: h(t) = (2− 2t)−(n−2)/2 = |x − y |−(n−2);
Riesz s-potential: h(t) = (2− 2t)−s/2 = |x − y |−s ;
Log potential: h(t) = − log(2− 2t) = − log |x − y |;
Gaussian potential: h(t) = exp(2t − 2) = exp(−|x − y |2);
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Spherical Harmonics

Harm(k): homogeneous harmonic polynomials in n variables of degree
k restricted to Sn−1 with

rk,n := dim Harm(k) =

(
k + n − 3
n − 2

)(
2k + n − 2

k

)
.

Spherical harmonics (degree k):

{Ykj(x) : j = 1, 2, . . . , rk,n}

orthonormal basis of Harm(k) with respect to normalized
(n − 1)-dimensional surface area measure on Sn−1.
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Spherical Harmonics and Gegenbauer Polynomials

The Gegenbauer polynomials and spherical harmonics can be defined
through the Addition Formula (t = 〈x , y〉):

P
(n)
k (t) := P

(n)
k (〈x , y〉) =

1
rk

rk∑
j=1

Ykj(x)Ykj(y), x , y ∈ Sn−1.

{P(n)
k (t)}∞k=0 orthogonal w/weight (1− t2)(n−3)/2 and P

(n)
k (1) = 1.

Gegenbauer polynomials P(n)
k (t) are special types of Jacobi

polynomials P
(α,β)
k (t) orthogonal w.r.t. weight (1− t)α(1 + t)β on

[−1, 1], where α = β = (n − 3)/2.
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Spherical Designs

The k-th moment of a spherical code C ⊂ Sn−1 is

Mk(C ) :=
∑

x ,y∈C
P

(n)
k (〈x , y〉) =

1
rk

rk∑
j=1

∑
x ,y∈C

Ykj(x)Ykj(y)

=
1
rk

rk∑
j=1

(∑
x∈C

Ykj(x)

)2

≥ 0.

Mk(C ) = 0 if and only if
∑

x∈C Y (x) = 0 for all Y ∈ Harm(k).
If Mk(C ) = 0 for 1 ≤ k ≤ τ , then C is called a spherical τ -design
and ∫

Sn−1
p(y) dσn(y) =

1
N

∑
x∈C

p(x), ∀ p ∈ Πτ (Rn).
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‘Good’ potentials for lower bounds

Suppose f : [−1, 1]→ R is of the form

f (t) =
∞∑
k=0

fkP
(n)
k (t), fk ≥ 0 for all k ≥ 1. (1)

f (1) =
∑∞

k=0 fk <∞ =⇒ convergence is absolute and uniform. Then:
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‘Good’ potentials for lower bounds

Suppose f : [−1, 1]→ R is of the form

f (t) =
∞∑
k=0

fkP
(n)
k (t), fk ≥ 0 for all k ≥ 1. (2)

f (1) =
∑∞

k=0 fk <∞ =⇒ convergence is absolute and uniform. Then:

E (n,C ; f ) =
∑

x ,y∈C
f (〈x , y〉)− f (1)N

=
∞∑
k=0

fk
∑

x ,y∈C
P

(n)
k (〈x , y〉)− f (1)N
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‘Good’ potentials for lower bounds

Suppose f : [−1, 1]→ R is of the form

f (t) =
∞∑
k=0

fkP
(n)
k (t), fk ≥ 0 for all k ≥ 1. (2)

f (1) =
∑∞

k=0 fk <∞ =⇒ convergence is absolute and uniform. Then:

E (n,C ; f ) =
∑

x ,y∈C
f (〈x , y〉)− f (1)N

=
∞∑
k=0

fkMk(C ) − f (1)N

≥ f0N
2 − f (1)N = N2

(
f0 −

f (1)

N

)
.

PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 9 / 44



Delsarte-Yudin LP Bound

Let An,h := {f : f (t) ≤ h(t), t ∈ [−1, 1), fk ≥ 0, k = 1, 2, . . . }.

Thm (Delsarte-Yudin Lower Energy Bound)

For any C ⊂ Sn−1 with |C | = N and f ∈ An,h,

E (n, h;C ) ≥ N2(f0 −
f (1)

N
). (3)

C satisfies E (n, h;C ) = E (n, f ;C ) = N2(f0 − f (1)
N ) ⇐⇒

(a) f (t) = h(t) for t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}, and
(b) for all k ≥ 1, either fk = 0 or Mk(C ) = 0.
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Linear program: Maximize D-Y lower bound

Maximizing Delsarte-Yudin lower bound is a linear programming problem.

Maximize N2(f0 −
f (1)

N
)

subject to f ∈ An,h.
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Linear program: Maximize D-Y lower bound

Maximizing Delsarte-Yudin lower bound is a linear programming problem.

Maximize N2(f0 −
f (1)

N
)

subject to f ∈ An,h.

For a subspace Λ ⊂ C ([−1, 1]), we consider

W(n,N,Λ; h) := sup
f ∈Λ∩An,h

N2(f0 −
f (1)

N
). (4)
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Linear program: Maximize D-Y lower bound

Maximizing Delsarte-Yudin lower bound is a linear programming problem.

Maximize N2(f0 −
f (1)

N
)

subject to f ∈ An,h.

For a subspace Λ ⊂ C ([−1, 1]), we consider

W(n,N,Λ; h) := sup
f ∈Λ∩An,h

N2(f0 −
f (1)

N
). (5)

Usually, Λ = span{P(n)
i }i∈I for some finite I ,

and we replace f (t) ≤ h(t) with f (tj) ≤ h(tj), j ∈ J for finite J.
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Dual Programming Heuristics

Primal Program Dual Program

Maximize cT x Minimize bT y

subject to Ax ≤ b, x ≥ 0 subject to AT y ≥ b, y ≥ 0
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Dual Programming Heuristics

Primal Program Dual Program

Maximize cT x Minimize bT y

subject to Ax ≤ b, x ≥ 0 subject to AT y ≥ b, y ≥ 0

Primal Maximize f0 −
1
N

∑
i∈I

fi

subject to:
∑
i∈I

fiP
(n)
i (tj) ≤ h(tj), j ∈ J, fi ≥ 0.

PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 15 / 44



Dual Programming Heuristics

Primal Program Dual Program

Maximize cT x Minimize bT y

subject to Ax ≤ b, x ≥ 0 subject to AT y ≥ b, y ≥ 0

Primal Maximize f0 −
1
N

∑
i∈I

fi

subject to:
∑
i∈I

fiP
(n)
i (tj) ≤ h(tj), j ∈ J, fi ≥ 0.

Dual Minimize
∑
j∈J

ρjh(tj)

subject to:
1
N

+
∑
j∈J

ρjP
(n)
i (tj) ≥ 0, i ∈ I \ {0}, ρj ≥ 0.
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Dual Programming Heuristics - complementary slackness

Add slack variables {uj}j∈J and {wi}i∈I .

Primal Maximize f0 −
1
N

∑
i∈I

fi

subject to:
∑
i∈I

fiP
(n)
i (tj) + uj = h(tj), j ∈ J, fi ≥ 0.

Dual Minimize
∑
j∈J

ρjh(tj)

subject to:
1
N

+
∑
j∈J

ρjP
(n)
i (tj)− wi = 0, i ∈ I \ {0}, ρj ≥ 0.

Complementary slackness condition for Primal Objective=Dual Objective:
fi · wi = 0, i ∈ I , and ρj · uj = 0, j ∈ J.
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1/N-Quadrature Rules

For a subspace Λ ⊂ C [−1, 1] we say {(αi , ρi )}ki=1 with −1 ≤ αi < 1,
ρi > 0 for i = 1, 2, . . . , k is a 1/N-quadrature rule exact for Λ if

f0 = γn

∫ 1

−1
f (t)(1− t2)(n−3)/2dt =

f (1)

N
+

k∑
i=1

ρi f (αi ), (f ∈ Λ).

=⇒ f0 −
f (1)

N
=

k∑
i=1

ρi f (αi ).
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1/N-Quadrature Rules

Example: Given a spherical τ -design C and |C | = N.
Then {α0 = 1, α1, . . . , αk} := {〈x , y〉 | x , y ∈ C} and

ρi :=
|{(x , y) ∈ C × C | 〈x , y〉 = αi}|

N2 , i = 0, . . . , k

is a 1/N-QR exact for Πτ . If p ∈ Πτ ([−1, 1]) then for any y ∈ Sn−1

we have

γn

∫ 1

−1
p(t)(1−t2)(n−3)/2dt =

∫
Sn−1

p(〈x , y〉)dσn(x) =
1
N

∑
x∈C

p(〈x , y〉)
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ULB space

For f ∈ Λ ∩ An,h and {(αi , ρi )}ki=1 exact for Λ:

f0 −
f (1)

N
=

k∑
i=1

ρi f (αi ) ≤
k∑

i=1

ρih(αi ),

and so

W(n,N,Λ; h) ≤ N2
k∑

i=1

ρih(αi ), (6)
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ULB space

For f ∈ Λ ∩ An,h and {(αi , ρi )}ki=1 exact for Λ:

f0 −
f (1)

N
=

k∑
i=1

ρi f (αi ) ≤
k∑

i=1

ρih(αi ),

and so

W(n,N,Λ; h) ≤ N2
k∑

i=1

ρih(αi ), (7)

with "=" ⇐⇒

(
∃f ∈ Λ ∩ An,h such that

f (αi ) = h(αi ), i = 1, . . . , k

)
If equality holds in (7) for all h ∈ C∞+ , we call Λ (with associated QR)
a (n,N)-ULB space.
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Hermite Interpolation

Suppose f , h ∈ C 1([−1, 1)), f ≤ h and f (α) = h(α) for some α ∈ [−1, 1).
If α > −1 then f ′(α) = h′(α).
If α = −1 then f ′(α) ≤ h′(α).

If f (αi ) = h(αi ), i = 1, . . . , k and αi > −1, then 2k necessary conditions.
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Sharp Codes

Observe that a spherical τ -design C yields a 1/|C |-quadrature rule that is
exact for Λ = Πτ with nodes {〈x , y〉 | x 6= y ∈ C}.

Definition

A spherical code C ⊂ Sn−1 is sharp if there are m inner products between
distinct points in it and C is a spherical τ = (2m − 1)-design.

Theorem (Cohn and Kumar, 2007)

If C ⊂ Sn−1 is a sharp code, then C is universally optimal; i.e., C is
h-energy optimal for any h that is absolutely monotone on [−1, 1).

Idea of proof: Show Hermite interpolant to h is in An,h; i.e., Πτ is a
(n, |C |)-ULB space.
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Levenshtein Framework - 1/N-Quadrature Rule

For every fixed N > D(n, 2k − 1)(the DGS bound) there exists a
1/N-QR that is exact on Λ = Π2k−1.
The numbers αi , i = 1, 2, . . . , k , are the roots of the equation

Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where Pi (t) = P
(n−1)/2,(n−3)/2
i (t) is a Jacobi polynomial and s = αk

is chosen to get weight 1/N at node 1.
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Universal Lower Bound (ULB)

ULB Theorem - (BDHSS, 2016)

Let h ∈ C∞+ and n, k , and N such that N ≥ D(n, 2k − 1). Then
Λ = Π2k−1 is a (n,N)-ULB space with the Levenshtein QR {αi , ρi}ki=1; i.e.,

E(n,N, h) ≥ N2
k∑

i=1

ρih(αi ).

The Hermite interpolants at these nodes are the optimal polynomials which
solve the finite LP in the class Π2k−1 ∩ An,h.
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Gaussian, Korevaar, and Newtonian potentials
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ULB comparison - BBCGKS 2006 Newton Energy

Newtonian energy comparison (BBCGKS 2006) - N = 5− 64, n = 4.
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ULB comparison - BBCGKS 2006 Gaussian Energy

Gaussian energy comparison (BBCGKS 2006) - N = 5− 64, n = 4.
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Improvement of ULB and Test Functions

Test functions (Boyvalenkov, Danev, Boumova, ‘96)

Qj(n, {αi , ρi}) :=
P

(n)
j (1)

N
+

k∑
i=1

ρiP
(n)
j (αi ).
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Improvement of ULB and Test Functions

Test functions (Boyvalenkov, Danev, Boumova, ‘96)

Qj(n, {αi , ρi}) :=
1
N

+
k∑

i=1

ρiP
(n)
j (αi ).

Subspace ULB Improvement Theorem (BDHSS, 2016)

Let Λ ⊂ C ([−1, 1]) be a ULB space with 1/N-QR {(αi , ρi )}ki=1. Suppose
Λ′ = Λ

⊕
span {P(n)

j : j ∈ I} for some index set I ⊂ N. If
Qj(n, {αi , ρi}) ≥ 0 for j ∈ I, then

W(n,N,Λ′; h) =W(n,N,Λ; h) = N2
k∑

i=1

ρih(αi ).

If there is j : Qj(n, {αi , ρi}) < 0, then W(n,N,Λ′; h) <W(n,N,Λ; h).
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Test functions - examples
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Example: ULB’s for N = 24, n = 4 codes

D4 lattice = {v ∈ Z4 | sum of components is even}.
C24 consists of the 24 minimal length vectors in D4 lattice (scaled to unit
sphere) and is a kissing configuration: T (C24) = 0.5.

C24 is 5-design with 4 distinct inner products: {−1,−1/2, 0, 1/2}.

Kissing number problem in R4 – solved by Musin (2003) using
modification of linear programming bounds.

C24 is conjectured to be maximal code but not yet proved.

C24 is not universally optimal – Cohn, Conway, Elkies, Kumar (2008);
however, D4 is conjectured to be universally optimal in R4.
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ULB Improvement for (4, 24)-codes

For n = 4, N = 24 Levenshtein nodes and weights (exact for Π5) are:

{α1, α2, α3} = {−.817352...,−.257597..., .474950...}
{ρ1, ρ2, ρ3} = {0.138436..., 0.433999..., 0.385897...},

The test functions for (4, 24)-codes are:

Q6 Q7 Q8 Q9 Q10 Q11 Q12

0.0857 0.1600 −0.0239 −0.0204 0.0642 0.0368 0.0598
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ULB Improvement for (4, 24)-codes

Motivated by this we consider the following space

Λ := span{P(4)
0 , . . . ,P

(4)
5 ,P

(4)
8 ,P

(4)
9 }.

Theorem

The space Λ with 1/24-QR {(αi , ρi )}4i=1 given by

{α1, α2, α3, α4} ≈ {−0.86029,−0.48984,−0.19572, 0.47854}
{ρ1, ρ2, ρ3, ρ4} ≈ {0.09960, 0.14653, 0.33372, 0.37847},

is a (4, 24)-ULB space. All (relevant) test functions Qj are now positive so
this solves full LP.

Arestov and Babenko (2000) arrive at these nodes, weights in the context
of maximal codes.
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LP Optimal Polynomial for (4, 24)-code
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Figure: The (4, 24)-code optimal interpolant - Coulomb potential
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Sufficient Condition: Partial products

Following ideas from Cohn and Woo (2012) we consider partial products
associated with a multi-set T := {t1 ≤ · · · ≤ tm} ⊂ [−1, 1]

pj(t) := Πi≤j(t − ti ).

Lemma
Let {αi , ρi} be a 1/N-QR with nodes −1 ≤ α1 < · · · < αk that is exact
for Λ. If α1 > −1, let T := {α1, α1, α2, α2, . . . , αk , αk}, else only take one
α1 once.
Suppose for each j ≤ m = |T | there exists qj ∈ An,pj such that
qj(αi ) = pj(αi ) for i = 1, . . . , k . Then Λ is a (n,N)-ULB space.
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Sufficient Condition: Partial products

Lemma
Let {αi , ρi} be a 1/N-QR with nodes −1 ≤ α1 < · · · < αk that is exact
for Λ. If α1 > −1, let T := {α1, α1, α2, α2, . . . , αk , αk}, else only take one
α1 once.
Suppose for each j ≤ m = |T | there exists qj ∈ An,pj such that
qj(αi ) = pj(αi ) for i = 1, . . . , k . Then Λ is a (n,N)-ULB space.

Proof.
For h ∈ C∞+ define

f (t) =
m∑
j=1

h[t1, . . . , tj ]qj−1(t),

where h[t1, . . . , ti ] are the divided differences of h. Then f ∈ An,h and
f (αi ) = h(αi ), i = 1, . . . k .

PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 37 / 44



Levenshtein framework lifted - Examples

Dimension Cardinality Lev: Λ = Πk new: Λ = Πk

3 14 5 9
3 22 7 11
3 23 7 11
3 32 9 13
3 34 9 13
3 44 11 15
3 47 11 15
3 59 13 17
3 62 13 17
4 24 5 9
4 44 7 11
4 48 7 11
4 120 11 15
5 36 5 9
5 38 5 9
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The Universality of the 600-cell Revisited

C600 = 120 points in R4. Each x ∈ C600 has 12 nearest neighbors
forming an icosahedron (Voronoi cells are spherical dodecahedra).

8 inner products between distinct points in C600:
{−1,±1/2, 0, (±1±

√
5)/4}.

2*7+1 or 2*8 interpolation conditions (would require 14 or 15 design)

C600 is an 11 design, but almost a 19 design (only 12-th moment is
nonzero); i.e., Mk(C600) = 0 for k ∈ {1, . . . , 19} \ {12}.
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600 cell

Coxeter (1963), Bőrőczky’s (1978) bounds establish maximal code of
600-cell

Andreev (1999) found polynomial in Π17 that shows 600-cell is
maximal code.

Danev, Boyvalenkov (2001) prove uniqueness (of spherical 11-design
with 120 points).

Cohn and Kumar(2007) find family of 17-th degree polynomials that
proves universal optimality of C600 and they require
f11 = f12 = f13 = 0; Λ0

17 = Π17 ∩ {P(4)
11 ,P

(4)
12 ,P

(4)
13 }⊥ with Lagrange

condition at -1. Partial product method doesn’t work for this family.
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600 cell - Levenshtein framework lift, 1st Step

Levensthein: n = 4, N = 120, quadrature: 6 nodes exact for Π11:

{α1, .., α6} ≈ {−0.9356,−0.7266,−0.3810, 0.04406, 0.4678, 0.8073}
{ρ1, .., ρ6} ≈ {0.02998, 0.1240, 0.2340, 0.2790, 0.2220, 0.1026}

Test functions: Q12,Q13 > 0, Q14,Q15 < 0.

Find quadrature rule for Λ15 = Π15 ∩ {P(4)
12 ,P

(4)
13 }⊥.

{β1, .., β7} ≈ {−0.981,−0.796,−0.476,−0.165, 0.097, 0.475, 0.808}

C
∏

(t − βi ) = P7(t) + C1P6(t) + C2P5(t) + C3P4(t), Pk = P
( 1
2 ,

3
2 )

k .

Verify Hermite interpolation works in Λ15.
New test functions Q12,Q13 > 0, so this solves LP in Π15.
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600 cell - Levenshtein framework lift, 2nd Step

Degree 17. Try Λ1
17 = Π17 ∩ {P(4)

12 ,P
(4)
13 }⊥, double interpolation at -1.

It works.

Degree 17. Try Λ2
17 = Π17 ∩ {P(4)

11 ,P
(4)
12 }⊥, double interpolation -1. It

works.

Degree 17. All solutions form triangle.
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600 cell - Optimal Triangle in Π17
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THANK YOU FOR YOUR ATTENTION !
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